Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts.

نویسندگان

  • X Warot
  • C Fromental-Ramain
  • V Fraulob
  • P Chambon
  • P Dollé
چکیده

Gene targeting experiments have shown that the murine Hoxa-13 and Hoxd-13 paralogous genes control skeletal patterning in the distal region of the developing limbs. However, both genes are also expressed in the terminal part of the digestive and urogenital tracts during embryogenesis and postnatal development. Here, we report the abnormalities occuring in these systems in Hoxa-13(-/-) and Hoxa-13/Hoxd-13 compound mutant mice. Hoxa-13(-/-) mutant fetuses show agenesis of the caudal portion of the Müllerian ducts, lack of development of the presumptive urinary bladder and premature stenosis of the umbilical arteries, which could account for the lethality of this mutation at mid-gestational stages. Due to such lethality, only Hoxa-13(+/-)/Hoxd-13(-/-) compound mutants can reach adulthood. These compound mutants display: (i) agenesis or hypoplasia of some of the male accessory sex glands, (ii) malpositioning of the vaginal, urethral and anal openings, and improper separation of the vagina from the urogenital sinus, (iii) hydronephrosis and (iv) anomalies of the muscular and epithelial layers of the rectum. Thus, Hoxa-13 and Hoxd-13 play important roles in the morphogenesis of the terminal part of the gut and urogenital tract. While Hoxa-13(-/-)/Hoxd-13(+/-) fetuses show severely impaired development of the urogenital sinus, double null (Hoxa-13[-/-]/Hoxd-13[-/-]) fetuses display no separation of the terminal (cloacal) hindgut cavity into a urogenital sinus and presumptive rectum, and no development of the genital bud, thereby demonstrating that both genes act, in a partly redundant manner, during early morphogenesis of posterior trunk structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hoxa-13 and Hoxd-13 play a crucial role in the patterning of the limb autopod.

Members of the Abdominal-B-related Hox gene subfamily (belonging to homology groups 9 to 13) are coordinately expressed during limb bud development. Only two genes from homology group 13 (Hoxa-13 and Hoxd-13) are specifically expressed in the developing distal region (the autopod), which displays the most complex and evolutionarily flexible pattern among limb 'segments'. We report here that tar...

متن کامل

Function of posterior HoxD genes in the morphogenesis of the anal sphincter.

Vertebrate 5'-located HoxD genes are expressed in the most caudal part of the digestive tract and their potential functions during gut development have been assessed by gene disruptions. We have inserted reporter lacZ sequences within the Hoxd-12 gene and analysed the morphology of the gut in these mice as well as in Hoxd-13 mutant animals. When homozygous, both mutations induce an important di...

متن کامل

Male accessory sex organ morphogenesis is altered by loss of function of Hoxd-13.

The role of the Hox gene Hoxd-13 in postnatal morphogenesis of the male accessory sex organs was examined by correlating the distribution and temporal regulation of expression in the accessory sex organs of postnatal mice with morphologic abnormalities of Hoxd-13-deficient transgenic mice. Previous studies of Hoxd-13 expression in the perinatal period have shown a broad domain of expression in ...

متن کامل

Zebrafish Hoxa and Evx-2 genes: cloning, developmental expression and implications for the functional evolution of posterior Hox genes

Vertebrate Hox genes are required for the establishment of regional identities along body axes. This gene family is strongly conserved among vertebrates, even in bony fish which display less complex ranges of axial morphologies. We have analysed the structural organization and expression of Abd-B related zebrafish HoxA cluster genes (Hoxa-9, Hoxa-10, Hoxa-11 and Hoxa-13) as well as of Evx-2, a ...

متن کامل

Regulation of number and size of digits by posterior Hox genes: a dose-dependent mechanism with potential evolutionary implications.

The proper development of digits, in tetrapods, requires the activity of several genes of the HoxA and HoxD homeobox gene complexes. By using a variety of loss-of-function alleles involving the five Hox genes that have been described to affect digit patterning, we report here that the group 11, 12, and 13 genes control both the size and number of murine digits in a dose-dependent fashion, rathe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 124 23  شماره 

صفحات  -

تاریخ انتشار 1997